
Modeling Vegetation with L-systems Using an Image

Srinidhi Hegde Swati Rathi

Figure 1: Proposed Pipeline for developing 3D model of tree from
its 2D image

Abstract

Realistic models of vegetations are very essential piece of immer-
sive virtual environment simulations. We are developing a novel
technique to render models of visually similar trees from a single
reference image of a tree that is to be modelled. We use a user
guided method to extract out the 2D skeleton. The technique also
encompasses the usage of a procedural vegetation generation tech-
nique - the L-systems. In this report we present a modelling pipeline
for developing a 3D tree model of tree starting from a single image
of the tree.

Keywords: procedural vegetation, l-systems, vegetation mod-
elling

1 Introduction

3D models of botanical trees are important in geographical land-
scape simulation, cityscape design, virtual reality and other fields
of 3D graphics. However, designing tree models is challenging be-
cause trees have enormous structural complexity. Tree modeling
techniques can be classified as:

• Rule based: This requires expertise in botany and adjustment
of parameter values.

• Image based: This helps in designing realistic trees but they
cannot be modified.

In our approach we try to synthesize L-system rules from a single
image of a tree, hence there is no need for any botany expertise .
Also we use the deduced L-system rules for creating variations of
the modeled tree, by tweaking its parameters, thereby generating a
virtual natural landscape.

2 Literature Survey and Other Works

The growth of trees adheres to strong botanic rules and patterns.
Many previous methods are rule based. Prusinkiewicz et al.
[Prusinkiewicz et al. 1994] introduced a series of methods based
on the idea of the generative L-system. [Weber and Penn 1995]
used geometric rules to produce realistic-looking trees. de Reffye
et al. [De Reffye et al. 1988] designed rules according to botanical
knowledge. These techniques generate good results, but they often
require expertise for effective use. The idea behind rule based meth-
ods is that the branch and leaf arrangement follow a pattern which
can be predicted with a set of rules and parameters. However, these
rules and parameters are nontrivial to set.

In the past several years, image based methods become popular.
These methods use images to recover 3D structure of the tree.
Reche-Martinez et al. [Reche-Martinez et al. 2004] recovered the
opacity and color of each cell of a volume containing the tree. Al-
though realistic results can be produced by this method, its volumet-
ric representation makes editing and animation almost impossible.

Our approach is based on the method proposed by Ruoxi Sun et.al
[Sun et al. 2009] which combines rule-based and image-based tech-
niques and is able to intelligently model lightweight trees. In this
approach, 3D skeleton of a tree trunk and the branching structure
are reconstructed from images using binocular vision methods, and
the parametric L-system is extracted from the reconstructed 3D
skeleton and branching structure.

3 Procedural Generation of Vegetation: L-
Systems Overview

Lindenmayer systems or L-systems for short were conceived as
a mathematical theory of plant development. In 1968 a biolo-
gist, Aristid Lindenmayer, introduced a new type of string-rewriting
mechanism, subsequently termed L-systems. The essential differ-
ence between Chomsky grammars and L-systems lies in the method
of applying productions. In Chomsky grammars productions are
applied sequentially, whereas in L-systems they are applied in par-
allel and simultaneously replace all letters in a given word. This
difference reflects the biological motivation of L-systems. Produc-
tions are intended to capture cell divisions in multicellular organ-
isms, where many divisions may occur at the same time. In order
to model branching structures in trees an extension of L-Systems
is used which is the Bracketed L-system. Thus trees can be repre-
sented using strings with bracket. Two new symbols are introduced
to delimit a branch. They are:

• ’[’ Push the current state of the turtle onto a pushdown stack.
The information saved on the stack contains the turtles posi-
tion and orientation, and possibly other attributes such as the
color and width of lines being drawn.

• ’]’ Pop a state from the stack and make it the current state of
the turtle. No line is drawn, although in general the position
of the turtle changes.

4 Modelling Pipeline

The pipeline that we have proposed is not tested completely, that is
, some of the modules of the pipeline are yet to be tested. Others



have been verified to produce satisfactory results. In the following
subsection we present details about some of the modules that are
tested successfully.

4.1 Prerequisites for Image

The prerequisites for the image that will be used for reference, also
called reference image, are really simple. Firstly, the silhouette of
the tree should be clearly demarcated from the background and sec-
ondly, the number visible branches, that are not occluded by leaves
or other objects in the image, should be maximum possible. These
prerequisites are not really essential for determining the 2D tree
skeleton as in the next module we allowing the users to draw out
the relevant visible branches of the tree. So the prerequisites will
help in improving the user experience.

4.2 Sketching 2D Branch Strokes

While modelling a tree the initial step is to capture the branching
structure of the tree. We must be able to determine the branching
structure accurately as it forms an essential component of the tree
structure. For this reason we allow the user to sketch the visible
branches in the image. Each stroke drawn by a user represents an
individual branch and it is drawn as a polyline to represent curves
in a branch. The strokes drawn by user have been approximated
using the Douglas Peukar algorithm. Douglas Peukar algorithm is
used for simplifying the curves by reducing the number of points on
the curve. The output of this algorithm is an approximation of the
original curve drawn by the user. The algorithm initially includes
the starting and the ending point on the curve. It then joins the two
end points and determines the point that is farthest from this line. It
includes the farthest point only if its orthogonal distance from the
line segment is greater than a threshold e. As the value of e reduces
the curve becomes smoother since the number of points used for
approximating the curve increases.

4.3 Deducing L-Systems and Physical Tree Parame-
ters

Once the skeleton is obtained from the image we deduce L-System
rules from the skeleton. The deduced L-system rules help in grow-
ing the portion of tree branches which is occluded by the foliage
and hence was not drawn by the user. L-system grammar is spec-
ified by an axiom(the starting point), set of production rules and a
set of parameters. The logical structure of tree branches is decided
by axiom and productions. Tree parameters like the branch lengths,
branch widths and branching angles helps deciding the tree shape.
The extraction of axiom and production from the 2D skeleton fol-
lows 2 Steps: Scan the branching structure of the 2D skeleton first
bottom-up then left-right to build a initial production set P. Let the
root branch r to be the axiom. Find the similar substructures in the
branching structure of the 2D skeleton, record them in a table R. Re-
duce P according to R. The extraction algorithm will be illustrated
by the sample skeleton in Figure 2.

Before extracting productions, we need to define two categories of
branches first: the branches with no children are terminal, the oth-
ers are internal. As shown in Figure 2, branches with dashed lines
are terminal, the others are internal. Each internal branch is asso-
ciated with a unique ID. Terminal branches have a common ID t
because they have the same structure. Numbers (or letter) beside
the branches in Figure 2 are their IDs. A production has the form
of predecessor successor, where predecessor represents the ID of
a parent branch and successor is a string composed of IDs of chil-
dren branches belonging to predecessor. The branching structure
of the tree trunk can be fully translated into a set of productions P.

Figure 2: The illustration of a branching structure. Dashed lines
represent terminal branches, others are internal branches. IDs of
internal branches are marked out and the ID t of terminal branches
is omitted.

All productions in P are sorted in the specified order, first bottom-
up, then left right.. In addition, we define equivalent productions
as ones with the same successors. Equivalent productions follow a
property: if two productions P[i] and P[j] are equivalent, P[j].p ap-
pearing in the successor of a production can be replaced by P[i].p.
In this case, P[j] can be deleted from P for simplification. This dele-
tion can be repeated until there are no equivalent productions in P.
The process of deletion is called pre-reduction. Table 2 also lists
the result after pre-reduction.

Next work is to analyze the rest productions to find those produc-
tions who have similar structures. Similar structures mean those
branches who have the same sequel-context in the tree skeleton un-
til one of the branches reaches to a terminal branch. Judging if
two branches are similar is a recursive process. For instance, in
Figure 2, branch 3 and r are similar since 3s children 8 and 9 are
similar to rs children 1 and 2 respectively. Judging process stops
when branch 3 sequel-context reaches to 8s two children and 9s
three children which are all terminal branch t. At the same time, rs
sequel-context reaches to 1s two children 3, 4 and 2s three children
5, 6, 7. This process judges the similarity between not only 3 and
r, but also all the descendants during the whole process. They are
8 to 1, 9 to 2, 8s children to 3, 4 respectively and 9s children to 5,
6, 7 respectively. Then the reduction table R is used to record all
the similar relationship among all the branches. R is organized as a
two-column table, the first column is the base ID and the second one
is all the IDs similar to the ID in the first column and in the lower
level in the skeleton. After building R, P is reduced according to R.
The reduction process is replacing the ID appearing in P(ID) with
R(ID). If more than one elements exist in R(ID), select the one who
has the lowest level in the tree skeleton and at the most left. For
instance, 14 is replaced by 3. The whole replacing process need to
follow the bottom-up order when traverse R. By replacing IDs in R,



terminal branch can be replaced by a similar internal branch in our
algorithm. However, if a terminal branch does not have the similar
structure in the lower level, it can be reduced by the root branch r.
As a result, the productions in P obtained the recursiveness, which
allows the infinite growth ability of P. P after reduction is listed in
Table 2.

Figure 3: Left: initial P; Right: after pre-reduction.

Figure 4: Left: R; Right: P after reduction.

4.4 Conversion of 2D Tree Skeleton to 3D

This module focussed on generation of 3D skeleton from a 2D
skeleton without applying L-system production rules. The first of
this task requires us to segregate and identify each branch. For
this a line segment in the skeleton or a set of continuous line seg-
ment strips, also known as polylines, were to be identified sepa-
rately from the skeleton. The convention that is followed in our
case while drawing 2D strokes is that the first stroke will always
represent the tree trunk. All these branches and trunk are indexed
(0-based indexing) according to the sequence in which they were
drawn. The start and terminal node location are stored along with
the parent and child branch for each branch in the tree skeleton.

The crucial part of the 3D skeleton construction is branch place-
ment in 3D space. According to the method described in [Okabe
et al. 2007], the aim of that method was an optimal placement of
branches that are maximally angled. For this purpose, we first place
branches one by one and calculate the distance transform or the dis-
tance map for the top view of the 2D skeleton of tree every time we
place a new branch and then compute the regions of local maximas
in the obtained distance map. Among these areas of local maximas
a region is selected that ensures maximal angled branch placement
when we add a new branch in the next iteration.

Figure 5: Creation of distance maps.

In our implementation, for branch placement, we resorted to uni-
form angular distribution in all directions. Furthermore, we added
random perturbations to the angles to make the models more real-
istic. Thus the angle, θ, is calculated using the following equation,

θ = (2 ∗ π/n) + δ (1)

where δ is the random perturbation parameter, n is the number of
immediate children of tree trunk.

The challenging part of this module was to ensure that the 3D skele-
ton, so created, should preserve the visual details from the perspec-
tive of the reference image. For this we employed rotation with
scaling to deal with this challenge. We rotated the branch, that is
to be placed, by an angle of θ and then we scaled each node of the
branch to preserve the branch length as per the reference image.

There were some limitations regarding the approach we used. Al-
though this technique perfectly captures and preserves the reference
image details but it fails to look realistic from other angles due to
the fact that the new z-coordinates of the nodes are linearly interpo-
lated from start to end of the branch.

5 Future Work

In the following subsections we mention some of the unfinished
tasks that we will take up in the future. These are the untested
modules of the proposed pipeline.

5.1 Creating 3D Tree Model

In the previous module of the pipeline we obtained a 3D tree skele-
ton of the required tree. This module of the pipeline will use this 3D
skeleton as input to produce a 3D model of the tree with accordance



Figure 6: Sketch of 2D skeleton by user.

with the deduced physical parameters of the tree from the reference
image.

The approach that we are planning to use to create a 3D model is
to use generalized cylinders as mentioned in [Mech et al. 1997].
For creating an effect of smooth transitions at bending of the tree
branches we will include a simple spherical primitive which has its
radius equal to the radii of the ends, between which sphere is to be
included, of the 2 generalized cylinders which are to be connected
at this junction.

5.2 Fine Tuning and Further Beautification

As a part of our future work proposal we look into the beautification
of tree models by enhancing the Level of Details (LoD) to the model
developed from the above mentioned pipeline. Some of the features
that we plan to implement are integrating leaf models to the tree
model structure and texturing the above models - both of trees and
leaves.

Some of the features that are planned as far as leaf models are con-
sidered are, firstly, random and evenly distributed venation patterns
on the leaf surface and, secondly, the introduction of cuts in leaf
silhouette and thirdly, the feature of decaying leaves among normal
leaf pattern on tree.

For the texturing portion of beautification of tree model, we are
planning to texture the tree branches, trunks and leaves. For this
purpose we will require two different texture images - one for the
tree bark texture and the other for leaf textures.

References

DE REFFYE, P., EDELIN, C., FRANÇON, J., JAEGER, M., AND
PUECH, C. 1988. Plant models faithful to botanical structure
and development, vol. 22. ACM.

MECH, R., PRUSINKIEWICZ, P., AND HANAN, J. 1997. Exten-
sions to the graphical interpretation of l-systems based on turtle
geometry.

OKABE, M., OWADA, S., IGARASHI, T., AND IGARASHI, T.
2007. Interactive design of botanical trees using freehand
sketches and example-based editing. In ACM SIGGRAPH 2007
courses, ACM, 26.

Figure 7: Original view of model generated.

Figure 8: Back-view of model generated.

Figure 9: Side-view of model generated

Figure 10: Generalized cylinders (a)without spherical primi-
tives.(b) with spherical primitives.

PRUSINKIEWICZ, P., JAMES, M., AND MĚCH, R. 1994. Syn-
thetic topiary. In Proceedings of the 21st annual conference on
Computer graphics and interactive techniques, ACM, 351–358.



RECHE-MARTINEZ, A., MARTIN, I., AND DRETTAKIS, G. 2004.
Volumetric reconstruction and interactive rendering of trees from
photographs. In ACM transactions on graphics (ToG), vol. 23,
ACM, 720–727.

SUN, R., JIA, J., LI, H., AND JAEGER, M. 2009. Image-based
lightweight tree modeling. In Proceedings of the 8th Interna-
tional Conference on Virtual Reality Continuum and its Applica-
tions in Industry, ACM, 17–22.


